

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

POST MID TERM (2025-26) MATHEMATICS-MARKING KEY

Class: XI

Date: 07-01-26

Admission no:

Time: 1hrs

Max Marks: 25

Roll no:

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D and E.
2. Section A has 6 MCQs carrying 1 mark each
3. Section B has 2 questions carrying 02 marks each.
4. Section C has 2 questions carrying 03 marks each.
5. Section D has 1 question carrying 05 marks each.
6. Section E has 1 case-based integrated units of assessment (04 marks each) with sub-parts.
7. All Questions are compulsory.
8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

1. **Q1.** Find the value of:

1M

$$\lim_{y \rightarrow 2} \frac{y^2 - 4}{y - 2}$$

- a) 2
- b) 4
- c) 1
- d) 0

Answer: (b) 4

Solution:

$$\frac{y^2 - 4}{y - 2} = \frac{(y - 2)(y + 2)}{y - 2} = y + 2 \Rightarrow 2 + 2 = 4$$

2. **Q2.** Find the value of:

1M

$$\lim_{y \rightarrow \infty} \frac{2}{y}$$

- a) 0
- b) 1
- c) 2
- d) Infinity

Answer: (a) 0

Solution:

As $y \rightarrow \infty$, $\frac{2}{y} \rightarrow 0$.

3. Find the value of:

1M

$$\lim_{x \rightarrow 4} \frac{x^2 - 2x - 8}{x - 4}$$

- a) 0
- b) 2
- c) 8
- d) 6

Answer: (d) 6

Solution:

$$x^2 - 2x - 8 = (x - 4)(x + 2) \Rightarrow \frac{(x - 4)(x + 2)}{x - 4} = x + 2 \Rightarrow 4 + 2 = 6$$

4. Find the value of:

1M

$$\lim_{x \rightarrow 3} \frac{x^2 - 9}{x - 3}$$

- a) 0
- b) 3
- c) Infinity
- d) 6

Answer: (d) 6

Solution:

$$x^2 - 9 = (x - 3)(x + 3) \Rightarrow \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \Rightarrow 3 + 3 = 6$$

5. Find the value of:

1M

$$\lim_{x \rightarrow \infty} \frac{x^2 - 9}{x^2 - 3x + 2}$$

- a) 1
- b) 2
- c) 0
- d) Limit does not exist

Answer: (a) 1

Solution:

For large x , divide numerator and denominator by x^2 :

$$\frac{x^2 - 9}{x^2 - 3x + 2} = \frac{1 - \frac{9}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} \Rightarrow \frac{1 - 0}{1 - 0 + 0} = 1$$

6. Which of the following limits does NOT yield 1?

1M

- a) $\lim_{x \rightarrow 0} 1$
- b) $\lim_{x \rightarrow \infty} (x^{-2} + x^{-1} + 1)$
- c) $\lim_{x \rightarrow \infty} \frac{1}{e^x} + 1$
- d) $\lim_{x \rightarrow \infty} \frac{x^3 + x^2 + 32x + 1}{x^2 - 3x + 2}$

Answer: ✓ Option (d)

Solution:

- **Option (a):**

$$\lim_{x \rightarrow 0} 1 = 1$$

- **Option (b):**

$$\lim_{x \rightarrow \infty} (x^{-2} + x^{-1} + 1) = 0 + 0 + 1 = 1$$

- **Option (c):**

$$\lim_{x \rightarrow \infty} \frac{1}{e^x} + 1 = 0 + 1 = 1$$

- **Option (d):**

Highest power in numerator = x^3

Highest power in denominator = x^2

As $x \rightarrow \infty$:

SECTION B

7. **Find the limits:**

2M

(i) $\lim_{x \rightarrow 1} (x^3 - x^2 + 1)$

(ii) $\lim_{x \rightarrow 3} [x(x + 1)]$

Solution:

(i) $\lim_{x \rightarrow 1} (x^3 - x^2 + 1)$

Since the function is a polynomial, substitute $x = 1$:

$$= 1^3 - 1^2 + 1 = 1 - 1 + 1 = 1$$

✓ **Answer: 1**

1M

(ii) $\lim_{x \rightarrow 3} [x(x + 1)]$

Again, substitute $x = 3$:

$$= 3(3 + 1) = 3 \times 4 = 12$$

✓ **Answer: 12**

1M

8. Find the derivative of the function $f(x) = 2x^2 + 3x - 5$ at $x = -1$. Also prove that $f'(0) + 3f'(-1) = 0$.

2M

Solution:

Given:

$$f(x) = 2x^2 + 3x - 5$$

Differentiate:

$$f'(x) = \frac{d}{dx}(2x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(5) = 4x + 3$$

Derivative at $x = -1$:

$$f'(-1) = 4(-1) + 3 = -4 + 3 = -1$$

1M

✓ **Answer: $f'(-1) = -1$**

Verification: $f'(0) + 3f'(-1) = 0$

$$f'(0) = 4(0) + 3 = 3$$

$$f'(0) + 3f'(-1) = 3 + 3(-1) = 3 - 3 = 0$$

✓ **Verified: $0 = 0$**

1M

SECTION C

9. Find the derivative of $\cos x$ from first principle.

3M

Solution:

Using first principle,

$$\frac{d}{dx}(\cos x) = \lim_{h \rightarrow 0} \frac{\cos(x + h) - \cos x}{h}$$

Apply trigonometric identity:

$$\cos(x + h) = \cos x \cos h - \sin x \sin h$$

So,

$$\frac{d}{dx}(\cos x) = \lim_{h \rightarrow 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

Factor out $\cos x$:

$$= \lim_{h \rightarrow 0} [\cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h}]$$

2M

Use limits:

$$\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1, \lim_{h \rightarrow 0} \frac{\cos h - 1}{h} = 0$$

Therefore,

$$\begin{aligned} &= \cos x(0) - \sin x(1) \\ &= -\sin x \end{aligned}$$

Answer: -sin x

1M

10. If the function $f(x)$ satisfies $\lim_{x \rightarrow 1} \frac{f(x)-2}{x^2-1} = \pi$, evaluate $\lim_{x \rightarrow 1} f(x)$.

3M

Solution:

Given:

$$\lim_{x \rightarrow 1} \frac{f(x) - 2}{x^2 - 1} = \pi$$

As $x \rightarrow 1$, the denominator:

$$x^2 - 1 = (x - 1)(x + 1) \rightarrow 0$$

2M

For the limit to exist and not be infinite, the numerator must also approach 0:

$$f(x) - 2 \rightarrow 0 \Rightarrow f(x) \rightarrow 2$$

Therefore:

$$\lim_{x \rightarrow 1} f(x) = 2$$

1M

Answer: 2

11. Evaluate

5M

(a) Let a_1, a_2, \dots, a_n be real numbers and define

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n).$$

Evaluate

$$\lim_{x \rightarrow a_k} f(x) \text{ for some } a_k \in \{a_1, a_2, \dots, a_n\}.$$

(b) The function $f(x)$ is defined as

$$f(x) = \begin{cases} mx + n, & 0 \leq x \leq 1 \\ nx^3 + m, & x > 1 \end{cases}$$

For what integer values of m and n does the limit $\lim_{x \rightarrow 1} f(x)$ exist?

Answer Key / Marking Scheme

(a) Solution (2 marks):

At $x = a_k$, only the factor $(x - a_k)$ becomes zero, while all other factors remain finite.
So,

$$\lim_{x \rightarrow a_k} f(x) = 0$$

2M

✓ Final Answer: 0

(b) Solution (3 marks):

For limit to exist at $x = 1$, left-hand and right-hand limits must be equal.

Left-limit:

$$f(1^-) = m(1) + n = m + n$$

Right-limit:

$$f(1^+) = n(1)^3 + m = n + m$$

Since both expressions are equal automatically:

$$m + n = m + n$$

This is always true.

3M

✓ So, the limit exists for all integer values of m and n .

→ Final Answer: The limit exists for all integers m and n .

SECTION E

12. A toy manufacturing company programs a cutting machine that works using mathematical functions. The first cutting program uses the function: 4M

$$P(x) = \frac{x^{15} - 1}{x^{10} - 1}$$

To calibrate the machine, the output must be known as x approaches 1.

Answer the following:

(a) State the algebraic identity used to factor the expressions $x^{15} - 1$ and $x^{10} - 1$.

(b) Evaluate: $\lim_{x \rightarrow 1} P(x)$.

(c) Later, the company updates the program to use another expression:

$$Q(x) = 1 + x + x^2 + \dots + x^{10}$$

Find: $\lim_{x \rightarrow 1} Q(x)$.

Solution (Marking Scheme)

(a) Algebraic Pattern (1 mark)

$$x^n - 1 = (x - 1)(1 + x + x^2 + \dots + x^{n-1})$$

✓ Pattern used: Difference of powers identity.

1M

(b) Evaluate $\lim_{x \rightarrow 1} P(x)$ (2 marks)

$$P(x) = \frac{x^{15} - 1}{x^{10} - 1} = \frac{(x-1)(1+x+x^2+\dots+x^{14})}{(x-1)(1+x+x^2+\dots+x^9)}$$

Cancel $(x-1)$:

$$P(x) = \frac{1+x+x^2+\dots+x^{14}}{1+x+x^2+\dots+x^9}$$

Now apply $x \rightarrow 1$:

- Numerator has **15 terms**, each becomes 1 \rightarrow total = **15**
- Denominator has **10 terms**, each becomes 1 \rightarrow total = **10**

$$\lim_{x \rightarrow 1} P(x) = \frac{15}{10} = \frac{3}{2}$$

2M

✓ Answer: $\boxed{\frac{3}{2}}$

(c) Evaluate $\lim_{x \rightarrow 1} Q(x)$ (2 marks)

$$Q(x) = 1 + x + x^2 + \dots + x^{10}$$

As $x \rightarrow 1$, every term becomes 1:

$$Q(1) = 11$$

1M

✓ Answer: $\boxed{11}$

*****BEST OF LUCK*****